1155竞价

——人生天地之间,
若白驹过隙,忽然而已。
RSS订阅
竞价培训

数据分析在应用场景下究竟可以做什么?

发布时间:2019-01-11 18:06 来源:1155竞价学习网 类别:sem数据分析流程(5)

  sem数据分析流程(www.11-55.org)。sem数据分析流程(www.11-55.org),sem数据分析流程(www.11-55.org)!sem数据分析流程(www.11-55.org),sem数据分析流程(www.11-55.org),GrowingIO 创始人张溪梦是前 LinkedIn 分析工程技术总监,在 LinkedIn 期间,领导数据分析解决方案团队,并且建立了可视化端到端的数据分析平台。曾就职于 LinkedIn、 eBay、HP 等,从普通工程师做到工程技术总监,在数据解决方案、数据仓库、数据工程方面有十多年的经验。张溪梦本文分别从拉新、盘活、转化、留存四个方面讲述了数据自动化如何帮助企业创造更多、更深的价值。

  数据分析在基本应用场景下,我们现在能用数据干些什么呢?基于我在 eBay 和 Linkedin 工作的几年,做了很多数据分析的场景,跟大家分享一下。

  第一可以用数据获取用户,今天上午我们有客户也谈到市场营销 SEM 的解决方案,采用了 GrowingIO 的软件和分析解决方案,大概在两个星期就实现了市场营销的分析。

  第二个产品的互动,就是指当用户登陆网站使用产品的时候,用户用的是不是很爽,很流畅,很简单。我们可以通过数据分析来优化产品体验。

  第三个付费转化,一开始很多网站会吸引用户免费使用产品,我们如何能够缩短时间,快速把免费用户转化成为付费用户,这个周期可长可短。

  第四个是客户留存,客户变成我们的客户之后,能够持续的使用,不要流失。因为我们发现获取新用户的成本比挽留一个老用户的成本要高。

  我把这四个点简单概括成几个字。第一是拉新,找到新用户。第二是盘活,我们有产品,希望用户的使用非常地活跃。第三是转化,希望从免费变成付费。第四是留存,不希望这个客户/用户流失。

  作为大数据的解决方案来说,是能够发现所有线上的入口。我们需要跟踪市场营销的每一个渠道,在每个渠道投入多少资源,回报是怎样的。我们要跟踪用户在哪个渠道,哪个购买入口,在哪一个点,成功的转化。也就是计算渠道的效率是什么样的,衡量每个渠道的转化率,资源投放是多少。

  客户的区隔。主要是在做市场营销的时候希望能够降低营销成本,能够把不同的客户区分出来,在区分客户之后,用不同的打法去给客户做一些市场营销的手段。比如说是有邮件的方式,有社交网络推送的方式等等,还是说要找销售直接去跟客户聊。

  最重要要有一个 ROI 工具。ROI 算法就是你要能够清楚的计算出来,这个市场营销的投入和产出到底是多少。

  这里有两个层次,第一个层次,你作为企业,你去做市场营销,你要知道你自己的 ROI。第二个层次,你企业平台上还有你服务那些客户的 ROI,你能不能算出来。就是你的这些客户在使用你提供的产品,如何能够证明说,你的客户在使用了在你的平台软件和服务之后,在为客户创造价值,创造了多少价值。

  简单讲一个 Linkedin 的例子。用户在 Linkedin 上搜索企业信息或者申请职位,或者他跟随一个公司,或者说他的简历被搜索了一次,这些主动的,被动的,公司与个人,个人与个人的交互,总共大概是 300 亿的级别,网站上 3 亿多用户之间的所有交互。

  我们做了一个大数据分析,然后我们能够把这个 ROI 算出来,从而我们计算出来一个叫做企业雇主品牌指标,这个指标可以衡量企业对于全球所有的人才的吸引指数是多少,这是有一个全球的排名,会非常有意思。中国的一些企业想在走国际化道路,希望提高企业品牌在全球的影响,这个指标特别能帮助中国企业吸引国际化人才。

  产品,最重要是让用户在你网站上使用非常流畅。怎么样说流畅不流畅,我们需要知道用户,在你网站中或者在你的移动应用当中,它的每一个操作,它的每一次交互,都有一条记录在那里,就是我之前说的时间、地点、人物、内容和交互方法。

  再说一下用户画像,比如用户的性别、年龄、收入等等,但这些是用户的基本画像。还有一些更深层次的,比如说用户的行为,他最近一段时间登陆了我们网站多少次,使用了我们的移动应用多少次,它最近这段时间购买了多少商品,或者他在您的移动 APP/网站中搜索了多少次,这些都是用户自发的行为,他主动的行为。

  美国有一家做视频播放的网站 Netflix,他们在一段时间内,有两种盈利方式一个是租 DVD,一种方式是线上的视频播放,他们把 DVD 业务全部砍掉,因为这部分很难掌握用户观看视频的行为,而且用户行为是不会欺骗你的,比如说用户注册的时候,有个选项让用户输入喜好的影片类型,比如动作、恐怖、科幻、动画,当你开始写的这些东西并不是符合你的用户行为,真正行为还是在海量数据当中,海量的历史记录当中把它提炼出来,才会知道你这个用户真正的倾向性和喜好是什么,然后大数据才会正确的给您推送你喜欢的内容。

  核心 KPI,我们如果能够了解客户所有行为之后,可以快速制定这些核心 KPI,能够知道我们企业的健康度。

  我们之前在没有大数据处理技术能力的情况下,我们经常做的是,采样,或者拿小部分数据先算一下。但当这个数据量非常大的时候,比如说 Linkedin 全球有 3 亿多用户,这 3 亿多用户,我们想做用户级别的归类。我看了用户简历,想知道这个人是不是销售,这个人是不是 HR,就是你很难通过简单的方法来定论,那么我们就需要去做大数据模型。

  之后我们就会有一些发现,我们之前的假设和我们最后的发现会非常有意思,你可以找到非常多的你意想不到的洞察(insights)。比如说我们在判别一个用户的简历,最后发现只要有这个关键字,他就一定是销售,这也是我们意外收获,这个关键字是一家加拿大销售公司培训的名称,只要有这个关键字,这个人是销售的概率就非常高,所以假设检验在大数据技术力的推动下,能够发现你以前未知的那些数据。

  再讲讲销售,首先我觉得这五个步骤不仅仅适用于对企业的销售,像包括建立网站和社区,我们都需要把用户不断的转化。

  首先,最重要的一点,就是我们有那么多潜在的客户,哪个客户使最重要的,这点可以通过它在网站,APP 上蛛丝马迹的行为进行判断。还有一个,以前在公司里需要派哪个客户去跟雅或者亚马逊接触。下面还需要通过数据理解这个公司谁是决策人。再接着需要通过内部网络社交关系,哪个人认识决策者,能让他买我们的产品。

  这五个步骤全部可以用数据驱动,而且驱动的速度是以前别人认为可能需要两个星期,三个星期的决策周期,今天我们可以用在一分钟之内就可以实现,这就是数据科学,技术力给我们带来的价值。

  如何促进用户留存?实际上客户的留存通过他的很多微妙的行为,跟我们讲的很多的很好的故事。

  我们以前做了很多这样的模型,后来发现真正流失的用户在非常早期就已经释放这种信号。因为用户有几个生命周期,整个流程有生命周期的,往往用户在早期很微妙的行为的加权,就能知道这个客户会在未来哪个时间点会流失。

  这是我们两三年来做用户的模型,慢慢的把留存的模型的时间线不断的往前提前,最早预算用户流失的时候,立刻发信息。后来发现用户使用好的时候问他怎么用,这样留存率提高了 10%。还有在教育的时候是不是要对客户进行培训,各种引导、辅助,后来发现客户的留存度增加了非常非常多。LinkedIn 财报中写到,大概从 50% 流失率降到 20% 的流失率。这些都是数据和运营相结合的一个很好的过程。

  大家想想我们以前工作很长时间,只能体现产品 10% 的价值,90% 的时间都浪费在数据采集,数据整合,数据清洗上面了。

  今天公司很多人能做到数据决策,能做到这点就需要我们用先进的工具技术,分析理念,结合先进的业务的方法论,把下面的时间尽量的做到全自动化。大家想想我们节省了 90% 的时间,如果能把这部精力用在金字塔尖上的话,我们将产出更多的效益。

  实际上在我以前的工作经验里看到,当我们用新兴的技术把底部做小,或者用新型的工具、产品把底部的工作做到多快好省,这会给企业提供高价值。孙子兵法有一句话,叫庙算胜者,得算多也,庙算不胜者,得算少也,多算胜,少算不胜。就是不去做数据分析,不去做决策,是很难在这种高密度竞争环境下生存。

  在美国数据决策可能起步早一点,很早就开始注重数据分析。那么在中国很多企业,特别像 BAT,这种大型的互联网公司,他们在数据分析上已经起步很早了。

  整个数据分析,其实是金字塔框架。最下层是我们的用户,然后我们有市场,有产品,有销售,我们需要通过一定的方法把这些数据收集上来,然后对数据做数据平台,可能是技术团队做了大数据的。在这之上,我们去做一些专题的分析,比如说销售的分析,市场的分析,产品的分析,运维的分析等等,商业智能是做一些报表跟踪,再之上是深度分析、商业洞察、决策和行动。

  整个这一套数据分析团队和架构,大部分企业花了很多的人力物力去解决下面金字塔的底部,因为数据的埋点、整合、清理需要大量的人力。

  如何能把大数据分析自动化,能把大数据变成小数据,能把非常慢的数据的处理,变成非常快的数据处理,能够把非常麻烦的这些非结构化的数据,看不懂的数据结构化,自动的做好这 90% 的工作。

  让我们企业内部懂业务的那些人:产品经理,业务端的人,他们在第一线接触客户,接触产品,他们最想知道企业业务的健康程度或者企业的主要问题在哪里,我们可以能够解放他们,让他们直接看到数据并分析这些数据,这就是 GrowingIO 所做的工作。


发现一点点-人生感悟:人生没有捷径。